Pulmonary surfactant protein (SP)-D is an important component of the innate immune system of the lung, which is thought to function by binding to specific carbohydrates on the surface of viruses and unicellular pathogens. SP-D has been shown to have a relatively high affinity for the monosaccharides mannose, glucose, and fucose. However, there is limited information on SP-D binding to complex carbohydrate structures, and binding of SP-D to fucose in the context of an oligosaccharide has not yet been investigated. In this study, we used surface plasmon resonance spectroscopy to examine the potential of SP-D to bind to various synthetic fucosylated oligosaccharides, and identified Fucalpha1-3GalNAc and Fucalpha1-3GlcNAc elements as strong ligands. These types of fucosylated glycoconjugates are presented at the surface of Schistosoma mansoni, a parasitic worm that, during development, transiently resides in the lung. In line with the findings by surface plasmon resonance, we found that SP-D can bind to larval stages of S. mansoni, demonstrating for the first time that SP-D interacts with multicellular lung pathogens.