Activation of the Wnt/beta-catenin signaling pathway has been associated with human cancers. To test whether Wnt-2 signal is a survival factor in human melanoma cells and thus represents a potential therapeutic target, we investigated the effects of inhibition of Wnt-2 signaling in human melanoma cell lines. We have developed a novel monoclonal antibody against the NH(2) terminus of the human Wnt-2 ligand that induces apoptosis in human melanoma cells overexpressing Wnt-2. Whereas incubation of this antibody with normal cells lacking Wnt-2 expression does not induce apoptosis, Wnt-2 signaling blockade by the ligand-binding antibody is confirmed by down-regulation of Dishevelled and beta-catenin. Wnt-2 small interfering RNA treatment in these cells yielded similar apoptotic effects and downstream changes. Down-regulation of an inhibitor of apoptosis family protein, survivin, was observed in both the Wnt-2 antibody-treated and small interfering RNA-treated melanoma cell lines, suggesting that the antibody induces apoptosis by inactivating survivin. In an in vivo study, this monoclonal anti-Wnt-2 antibody suppresses tumor growth in a xenograft model. These findings suggest that the anti-Wnt-2 monoclonal antibody may be useful for the treatment of patients with malignant melanoma.