The antiviral response of CD8 T cells involves the differentiation of naive T cells into distinct types of effector and memory cells, which may be distinguished by the level of CD7 expression. We have investigated CD8 T cells in adults and children infected with HIV-1 to determine the disease relevance of cell subsets defined by CD7. CD8 T cells from patients infected with HIV-1 displayed profound down-modulation of CD7 expression as compared with healthy subjects, with expansion of both CD7(low) and CD7(negative) effector subsets. Loss of CD7(high) cells correlated directly with HIV-1 load and was particularly pronounced in patients with rapid disease progression. CD8 T cells specific for HIV-1, as well as Epstein-Barr virus (EBV) and cytomegalovirus (CMV) were predominantly found in the CD7(low) effector cell subset. Furthermore, recovery of CD4 counts on antiretroviral therapy was associated with reversion of the skewed CD7 profile in CD8 T cells. Thus, effector CD8 T-cell subsets distinguished by lowered CD7 expression expand in a manner that correlates with the magnitude of HIV-1, EBV, and CMV antigenic challenge and contract in response to successful antiretroviral treatment. The results are discussed in relation to the dual roles of CD7 as a receptor of both costimulation and cell death.