Nitric oxide (NO), an important cellular messenger, has been linked to both neurodegenerative and neuroprotective actions. In the present review, we focus on recent data establishing a survival and differentiation role for NO in several neural in vitro and in vivo models. Nitric oxide has been found to be essential for survival of neuronal cell lines and primary neurons in culture under various death challenges. Furthermore, its lack may aggravate some neuropathological conditions in experimental animals. Several cellular pathways and signaling systems subserving this neuroprotective role of NO are considered in the review. Survey of recent data related to the developmental role of NO mainly focus on its action as a negative regulator of neuronal precursor cells proliferation and on its role of promotion of neuronal differentiation. Discussion on discrepancies arising from the literature is focused on the Janus-faced properties of the molecule and it is proposed that most controversial results are related to the intrinsic property of NO to compensate among functionally opposed effects. As an example, the increased proliferation of neural cell precursors under conditions of NO shortage may be, later on in the development, compensated by increased elimination through programmed cell death as a consequence of the lack of the survival-promoting action of the molecule. To elucidate these complex, and possibly contrasting, effects of NO is indicated as an important task for future researches.