Ascorbic acid does not affect the age-associated reduction in maximal cardiac output and oxygen consumption in healthy adults

J Appl Physiol (1985). 2005 Mar;98(3):845-9. doi: 10.1152/japplphysiol.00790.2004. Epub 2004 Oct 22.

Abstract

Maximal aerobic capacity (Vo(2max)) decreases progressively with age, primarily because of a reduction in maximal cardiac output (Q(max)). This age-associated decline in Vo(2max) may be partially mediated by the development of oxidative stress that can suppress beta-adrenergic-receptor responsiveness and, consequently, reduce Q(max). To test this hypothesis, Vo(2max) (indirect calorimetry) and Q(max) (open-circuit acetylene breathing) were determined in 12 young (23 +/- 1 yr, mean +/- SE) and 10 older (61 +/- 1 yr) adults following systemic infusion of either saline (control) and/or the powerful antioxidant ascorbic acid (acute: bolus 0.06; drip 0.02 g/kg fat-free mass) and following chronic 30-day oral administration of ascorbic acid (500 mg/day). Plasma ascorbic acid concentration was not different between young and older adults and was increased similarly, independent of age [change (Delta) acute = 1,055 +/- 117%; Delta chronic = 62 +/- 19%]. Oxidized low-density lipoprotein concentration was greater (P < 0.001) in older (57 +/- 5 U/l) compared with young (34 +/- 3 U/l) adults and was reduced in both groups (P < 0.02) following acute (Delta = -6 +/- 2%) but not chronic (P = 0.18) ascorbic acid administration. Control (baseline) Vo(2max) and Q(max) were positively related (r = 0.76, P < 0.001) and were lower (P < 0.05) in older (34 +/- 2 ml.kg(-1).min(-1); 16.1 +/- 1.1 l/min) compared with young (43 +/- 3 ml.kg(-1).min(-1); 20.2 +/- 0.9 l/min) adults. Following ascorbic acid administration, neither Vo(2max) (young acute = 41 +/- 2; young chronic = 42 +/- 2; older acute = 34 +/- 2; older chronic = 34 +/- 2 ml.kg(-1).min(-1)) nor Q(max) (young acute = 20.1 +/- 0.9; young chronic = 19.1 +/- 0.8; older acute = 16.2 +/- 1.1; older chronic = 16.6 +/- 1.4 l/min) was changed. These data suggest that ascorbic acid administration does not affect the age-associated reduction in Q(max) and Vo(2max).

Publication types

  • Clinical Trial
  • Randomized Controlled Trial
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adaptation, Physiological / drug effects
  • Adaptation, Physiological / physiology
  • Adult
  • Age Factors
  • Aged
  • Aging / drug effects
  • Aging / physiology*
  • Antioxidants / administration & dosage
  • Ascorbic Acid / administration & dosage*
  • Cardiac Output / drug effects
  • Cardiac Output / physiology*
  • Dose-Response Relationship, Drug
  • Double-Blind Method
  • Female
  • Humans
  • Male
  • Oxygen Consumption / drug effects
  • Oxygen Consumption / physiology*
  • Physical Endurance / drug effects
  • Physical Endurance / physiology*

Substances

  • Antioxidants
  • Ascorbic Acid