Objective: We analyzed the beneficial therapeutic effect of angiotensin converting enzyme inhibitor (ACEI) on both retinal and hind limb neovascularization in diabetic mice.
Methods and results: Diabetic mice (streptozotocin, 40 mg/kg) were treated with or without ACEI (Perindopril, 3 mg/kg per day) or AT1 receptor blocker (Candesartan, 20 mg/kg) for 4 months. Hind limb ischemia was then induced by right femoral artery ligature for 1 additional month. In the ischemic leg, angiographic score, capillary density, and foot perfusion were increased by 2.7, 2.0-fold, and 1.6-fold, respectively, in ACEI-treated diabetic mice compared with untreated diabetic animals (P<0.01). ACEI also raised vascular endothelial growth factor (VEGF) protein level by 1.4-fold in ischemic diabetic leg. This ACEI pro-angiogenic effect was totally blunted in diabetic bradykinin B2 receptor-deficient animals, suggesting that it was mediated by the bradykinin pathway. In the diabetic retina, angiotensinogen and ACE mRNA levels were increased by 2.8-fold and 4.1-fold, respectively (P<0.01 versus nondiabetic mice), highlighting a local activation of renin-angiotensin system. Diabetes also raised VEGF protein level by 1.5-fold (P<0.05 versus nondiabetic mice). Treatments with ACEI and AT1 receptor blocker hampered diabetes-induced VEGF upregulation and retinal neovascularization.
Conclusions: ACE inhibition improved neovascularization in the diabetic ischemic leg through activation of bradykinin signaling, whereas it reduced vessel growth in the diabetic retina through inhibition of overacting Ang II pathway.