CD45 engagement by monoclonal antibodies on human activated T cells triggers tumour necrosis factor-alpha (TNF-alpha) gene transcription in an epitope-specific manner. To dissect the early signalling events leading to TNF-alpha gene expression, we established that CD45 crosslinking resulted in tyrosine phosphorylation of p56lck, ZAP-70, CD3-zeta, LAT and Vav. This was accompanied by down-regulation of membrane-associated protein tyrosine phosphatase activity in the absence of demonstration of enhanced p56lck, p72syk and ZAP-70 kinase activity, which remained constitutive. These early events eventually triggered an intracellular Ca(2+) rise and phosphoinositide turnover. We conclude that down-regulation of membrane-associated tyrosine phosphatase activity by CD45 extracytoplasmic domain multimerization led, in an epitope-specific fashion, to unopposed tyrosine kinase activity and to the activation of the T-cell receptor/CD3 complex signalling cascade, resulting in TNF-alpha gene expression. This model strongly suggests that CD45 extracytoplasmic tail multimerization may contribute to the modulation T-cell functions.