Objective: Differences in diagnostic criteria and methods have led to mixed results regarding the metabolite pattern of HIV-associated brain injury in relation to neurocognitive impairment. Therefore, a multicenter MRS consortium was formed to evaluate the neurometabolites in HIV patients with or without cognitive impairment.
Methods: Proton magnetic resonance spectroscopy (MRS) at short-echo time (30 ms) was assessed in the frontal white matter, basal ganglia, and parietal cortex of 100 HIV patients [61 with AIDS dementia complex (ADC) and 39 neuroasymptomatic (NAS)] and 37 seronegative (SN) controls.
Results: Compared to SN, NAS had higher glial marker myoinositol-to-creatine ratio (MI/Cr) in the white matter (multivariate analyses, adjusted P=0.001), while ADC showed further increased MI/Cr in the white matter and basal ganglia (both P<0.001), and increased choline compounds (Cho)/Cr in white matter (P=0.04) and basal ganglia (P<0.001). Compared to NAS, ADC showed a reduction in the neuronal marker N-acetyl compound (NA)/Cr in the frontal white matter (P=0.007). CSF, but not plasma, viral load correlated with MI/Cr and Cho/Cr in white matter and NAA/Cr in parietal cortex. HIV infection and aging had additive effects on Cho/Cr and MI/Cr in the basal ganglia and white matter.
Conclusions: The results suggest that glial activation occurs during the NAS stages of HIV infection, whereas further inflammatory activity in the basal ganglia and neuronal injury in the white matter is associated with the development of cognitive impairment. Aging may further exacerbate brain metabolites associated with inflammation in HIV patient and thereby increase the risk for cognitive impairment.