It is now generally recognized that atherosclerosis is a chronic inflammatory disease, characterized by overrecruitment of leukocytes (monocytes and T-cells) to the site of inflammation. Vascular injury in response to cardiovascular risk factors promotes endothelial dysfunction, resulting in enhanced adhesion molecule expression and secretion of pro-inflammatory cytokines and chemokines. This, in turn, leads to adherence, migration and accumulation of leukocytes within atherosclerotic lesions. The recent findings on inflammatory processes involved in atherosclerosis development provide important links between risk factors and the mechanisms of atherogenesis. Thus, research interest has increasingly focused on inflammatory biomarkers as means of predicting the risk of future clinical events. Indeed, elevated plasma levels of molecules such as soluble intercellular adhesion molecule-1, interleukin-6 or C-reactive protein (CRP) have been shown to represent inflammatory markers of future cardiovascular risk. Among these, CRP has emerged as the most powerful and accessible for clinical use. A major challenge for future research is to implement these new insights in order to improve strategies for prediction, prevention and treatment of cardiovascular events.