Multiple ligand co-recognition of 3'-sulfogalactosylceramide (SGC) and sulfotyrosine initiated the comparison of SGC and sulfotyrosine and, subsequently, phosphotyrosine (pY) binding. SGC is a receptor for ligands involved in cell adhesion/microbial pathology. pY forms a Src homology domain 2 recognition motif in intracellular signaling. Using hsp70, anti-SGC, and anti-pY antibodies, ligand binding is retained following phosphate/sulfate and tyrosine/galactose substitution in SGC and sulfate/phosphate exchange in pY. Remarkable lipid-dependent binding to phosphatidylethanolamine-conjugated sulfotyrosine suggests "microenvironmental" modulation of sulfotyrosine-containing receptors, similar to glycosphingolipids. Based on an aryl substrate-bound co-crystal of arylsulfatase A, a sulfogalactose and phosphotyrosine esterase, modeling provides a solvation basis for co-recognition. c-Src/Src homology domain 2:SGC/phosphogalactosylceramide binding confirms our hypothesis, heralding a carbohydrate-based approach to regulation of phosphotyrosine-mediated recognition.