The proteome of most parasite species is currently unknown. Hairworms (Nematomorpha), 300 species distributed around the world, are parasitic in arthropods (mainly terrestrial species) when juveniles, but they are free-living in aquatic environments when adult. Most aspects of their systematics and biology are currently unknown. The aim of this paper was (i) to report a novel and reproducible protocol for the analysis of the proteome of hairworms using two-dimensional gel electrophoresis (2-DGE) and mass spectrometry (matrix laser desorption ionization-time of flight mass spectrometry (MALDI-TOF)) and (ii) to determine the level of proteomic divergence between two sympatric but taxonomically unrelated nematomorph species in the adult stage, Paragordius tricuspidatus Dufour (Nematomorpha, Gordiidae) and Spinochordodes tellinii Camerano (Nematomorpha, Gordiidae). In total, 689 protein spots were observed for P. tricuspidatus, 575 for S. tellinii. Only 36.2% spots were shared between the two species. Quantitative analysis of the proteins which are common to both parasite species reveals substantial differences in the pattern of protein expression. These results suggest a rapid evolutionary divergence between these two nematomorph families. Also, to test the value of our MALDI-TOF protocol, we used Actin-2 (Act-2), a protein highly conserved in the course of evolution. Peptide mass fingerprint (PMF) data obtained for Act-2 of P. tricuspidatus and S. tellinii suggest a very high homology with Act-2 of different worms species belonging to the Bilateria phylum (Annelida and Nematoda) and more specifically to Lumbricus terrestris (Annelida, Lumbricidae) and Caenorhabditis elegans (Nematoda, Rhabditidae). We discuss our results in relationship with current ideas concerning the use of proteomics in systematics.