DNA fragmentation/degradation is an important step for apoptosis. However, in unicellular organisms such as yeast, this process has rarely been investigated. In the current study, we revealed eight apoptotic nuclease candidates in Saccharyomyces cerevisiae, analogous to the Caenorhabditis elegans apoptotic nucleases. One of them is Tat-D. Sequence comparison indicates that Tat-D is conserved across kingdoms, implicating that it is evolutionarily and functionally indispensable. In order to better understand the biochemical and biological functions of Tat-D, we have overexpressed, purified, and characterized the S. cerevisiae Tat-D (scTat-D). Our biochemical assays revealed that scTat-D is an endo-/exonuclease. It incises the double-stranded DNA without obvious specificity via its endonuclease activity and excises the DNA from the 3'- to 5'-end by its exonuclease activity. The enzyme activities are metal-dependent with Mg(2+) as an optimal metal ion and an optimal pH around 5. We have also identified three amino acid residues, His(185), Asp(325), and Glu(327), important for its catalysis. In addition, our study demonstrated that knock-out of TAT-D in S. cerevisiae increases the TUNEL-positive cells and cell survival in response to hydrogen hyperoxide treatment, whereas overexpression of Tat-D facilitates cell death. These results suggest a role of Tat-D in yeast apoptosis.