Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis

Ann Neurol. 2005 Feb;57(2):236-51. doi: 10.1002/ana.20379.

Abstract

The causative pathomechanism of sporadic amyotrophic lateral sclerosis (ALS) is not clearly understood. Using microarray technology combined with laser-captured microdissection, gene expression profiles of degenerating spinal motor neurons isolated from autopsied patients with sporadic ALS were examined. Gene expression was quantitatively assessed by real-time reverse transcription polymerase chain reaction and in situ hybridization. Spinal motor neurons showed a distinct gene expression profile from the whole spinal ventral horn. Three percent of genes examined were downregulated, and 1% were upregulated in motor neurons. Downregulated genes included those associated with cytoskeleton/axonal transport, transcription, and cell surface antigens/receptors, such as dynactin, microtubule-associated proteins, and early growth response 3 (EGR3). In contrast, cell death-associated genes were mostly upregulated. Promoters for cell death pathway, death receptor 5, cyclins A1 and C, and caspases-1, -3, and -9, were upregulated, whereas cell death inhibitors, acetyl-CoA transporter, and NF-kappaB were also upregulated. Moreover, neuroprotective neurotrophic factors such as ciliary neurotrophic factor (CNTF), Hepatocyte growth factor (HGF), and glial cell line-derived neurotrophic factor were upregulated. Inflammation-related genes, such as those belonging to the cytokine family, were not, however, significantly upregulated in either motor neurons or ventral horns. The motor neuron-specific gene expression profile in sporadic ALS can provide direct information on the genes leading to neurodegeneration and neuronal death and are helpful for developing new therapeutic strategies.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Amyotrophic Lateral Sclerosis / genetics*
  • Amyotrophic Lateral Sclerosis / metabolism
  • Anterior Horn Cells / metabolism
  • DNA Primers
  • Female
  • Gene Expression Profiling
  • Humans
  • Immunohistochemistry
  • In Situ Hybridization
  • Lasers
  • Male
  • Microdissection
  • Middle Aged
  • Motor Neurons / metabolism*
  • Oligonucleotide Array Sequence Analysis
  • Reverse Transcriptase Polymerase Chain Reaction
  • Spinal Cord / metabolism*

Substances

  • DNA Primers