Synthesis and evaluation of N-(5-fluoro-2-phenoxyphenyl)-N-(2-[(18)F]fluoromethoxy-d(2)-5-methoxybenzyl)acetamide: a deuterium-substituted radioligand for peripheral benzodiazepine receptor

Bioorg Med Chem. 2005 Mar 1;13(5):1811-8. doi: 10.1016/j.bmc.2004.11.058.

Abstract

N-(5-Fluoro-2-phenoxyphenyl)-N-(2-[(18)F]fluoromethoxy-d(2)-5-methoxybenzyl)acetamide ([(18)F]2) is a potent ligand (IC(50): 1.71 nM) for peripheral benzodiazepine receptor (PBR). However, in vivo evaluation on rodents and primates showed that this ligand was unstable and rapidly metabolized to [(18)F]F(-) by defluorination of the [(18)F]fluoromethyl moiety. In this study, we designed a deuterium-substituted analogue, N-(5-fluoro-2-phenoxyphenyl)-N-(2-[(18)F]fluoromethoxy-d(2)-5-methoxybenzyl)acetamide ([(18)F]5) as a radioligand for PBR to reduce the in vivo metabolic rate of the non-deuterated [(18)F]2. The design principle was based on the hypothesis that the deuterium substitution may reduce the rate of defluorination initiated by cleavage of the C-H bond without altering the binding affinity for PBR. The non-radioactive 5 was prepared by reacting diiodomethane-d(2) (CD(2)I(2), 6) with a phenol precursor 7, followed by treatment with tetrabutylammonium fluoride. The ligand [(18)F]5 was synthesized by the alkylation of 7 with [(18)F]fluoromethyl iodide-d(2) ([(18)F]FCD(2)I, [(18)F]9). Compound 5 displayed a similar in vitro affinity to PBR (IC(50): 1.90 nM) with 2. In vivo evaluation demonstrated that [(18)F]5 was metabolized by defluorination to [(18)F]F(-) as a main radioactive component, but its metabolic rate was slower than that of [(18)F]2 in the brain of mice. The deuterium substitution decreased the radioactivity level of [(18)F]5 in the bone of mouse, augmented by the percentage of specific binding to PBR in the rat brain determined by ex vivo autoradiography. However, the PET image of [(18)F]5 for monkey brain showed high radioactivity in the brain and skull, suggesting a possible species difference between rodents and primates.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetamides / chemical synthesis*
  • Acetamides / pharmacology*
  • Animals
  • Benzyl Compounds / chemical synthesis*
  • Benzyl Compounds / pharmacology*
  • Brain / metabolism
  • Deuterium
  • Magnetic Resonance Spectroscopy
  • Mice
  • Radioligand Assay
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, GABA-A / drug effects*
  • Tissue Distribution

Substances

  • Acetamides
  • Benzyl Compounds
  • N-(5-fluoro-2-phenoxyphenyl)-N-(2-fluoromethoxy-d(2)-5-methoxybenzyl)acetamide
  • Receptors, GABA-A
  • Deuterium