Background: Chemokine receptors serve as coreceptors for human immunodeficiency virus type 1 (HIV-1) entry, influence cell tropism, and may critically determine central nervous system infection pathogenesis. Using an in vitro functional entry assay, we examined utilization of 2 principal coreceptors in cerebrospinal fluid (CSF) and plasma in 46 subjects.
Methods: Paired CSF and plasma samples were selected from subjects with a range of CD4 T cell counts. Amplified populations of env sequences were characterized as using CCR5 (R5), CXCR4 (X4), or both receptors (R5+X4). Individual clones derived from 3 subjects were analyzed for viral tropism and phylogeny.
Results: CSF and plasma pairs were mainly concordant for R5 (36/46) or R5+X4 (5/46) viruses. However, 5 pairs were discordant, 2 of which had the R5+X4 phenotype in CSF despite having the R5 phenotype in plasma. Although R5+X4 tropism was associated with advanced immunodeficiency, all 4 subjects with acquired immunodeficiency syndrome dementia complex had R5 tropism in CSF. Clones derived from R5+X4-tropic populations revealed mixtures of R5 and X4 viruses and viruses able to utilize either coreceptor, suggesting both virus exchange between compartments and autonomous CSF virus evolution.
Conclusions: Although R5 viruses predominate in the CSF, HIV-1 populations able to utilize CXCR4 are also present. Discordant tropism in CSF and plasma may have implications for R5 inhibitor therapy.