Recent experiments show that the microtubule-associated protein (MAP) 1B is a major phosphorylation substrate for the serine/threonine kinase glycogen synthase kinase-3beta (GSK-3beta) in differentiating neurons. GSK-3beta phosphorylation of MAP1B appears to act as a molecular switch regulating the control that MAP1B exerts on microtubule dynamics in growing axons and growth cones. Maintaining a population of dynamically unstable microtubules in growth cones is important for axon growth and growth cone pathfinding. We have mapped two GSK-3beta phosphorylation sites on mouse MAP1B to Ser1260 and Thr1265 using site-directed point mutagenesis of recombinant MAP1B proteins, in vitro kinase assays and phospho-specific antibodies. We raised phospho-specific polyclonal antibodies to these two sites and used them to show that MAP1B is phosphorylated by GSK-3beta at Ser1260 and Thr1265 in vivo. We also showed that in the developing nervous system of rat embryos, the expression of GSK-3beta phosphorylated MAP1B is spatially restricted to growing axons, in a gradient that is highest distally, despite the expression of MAP1B and GSK-3beta throughout the entire neuron. This suggests that there is a mechanism that spatially regulates the GSK-3beta phosphorylation of MAP1B in differentiating neurons. Heterologous cell transfection experiments with full-length MAP1B, in which either phosphorylation site was separately mutated to a valine or, in a double mutant, in which both sites were mutated, showed that these GSK-3beta phosphorylation sites contribute to the regulation of microtubule dynamics by MAP1B.