Studies of immune correlates of disease outcome associate humoral immune response mediated by T-helper 2 cytokines (IL-4, IL-10) with more virulent disease relative to a cell-mediated response driven by T-helper 1 cytokines (IL-2, IFN-gamma), particularly in viral and other intra-cellular infections. Specifically, the kinetics of both human immunodeficiency virus (HIV) and feline immunodeficiency virus (FIV) infection are closely associated with Type 1 versus Type 2 cytokine profiles. Puma (Felis concolor) lentivirus (PLV) is closely related to FIV, but based on phylogenetic and clinical studies, is more ancient and less pathogenic. The aims of this study were to validate feline real-time PCR primer/probe systems for puma cytokines and PLV as sensitive, quantitative assays for use in investigations of PLV pathogenicity. We demonstrate that primer/probe systems for IL-4, IL-10, IFN-gamma, TNF-alpha, GAPDH, and the pol region of PLV-1695 amplify puma cytokines and PLV-1695 with high amplification efficiency and sensitivity. Detection of PLV-1695 provirus in experimentally inoculated domestic cats proved to be of equivalent sensitivity, specificity, and positive and negative predictive value to co-culture of one million peripheral blood mononuclear cells (PBMC). Evaluation of cytokine induction during naturally occurring PLV infection will allow insight into mechanisms of host control associated with apathogenic infection. In addition, determination of viral loads during different stages of PLV infection or in different tissues from domestic cats or pumas will further elucidate capacity of these viruses to replicate and establish infection.