The hyperactivity of the brain renin-angiotensin system (RAS) has been implicated in the development and maintenance of hypertension in several types of experimental and genetic hypertension animal models. Among the main bioactive peptides of the brain RAS, angiotensin (Ang) II and Ang III display the same affinity for type 1 and type 2 Ang II receptors. Both peptides, injected intracerebroventricularly, similarly increase blood pressure (BP); however, because Ang II is converted in vivo to Ang III, the identity of the true effector is unknown. In this article, we review new insights into the predominant role of brain Ang III in the control of BP, underlining the fact that brain aminopeptidase A (APA), the enzyme-forming central Ang III, could constitute a putative central therapeutic target for the treatment of hypertension. This justifies the development of potent systemically active APA inhibitors, such as RB150, as prototypes of a new class of antihypertensive agents for the treatment of certain forms of hypertension.