The proglucagon-derived peptide glucagon-like peptide-1 (GLP-1) is an intestinal signal peptide postprandially released from the L cells of the lower gut. Exogenously administered the synthetic hormone exerts a glucose-dependent insulinotropic effect at the pancreatic beta-cells and lowers plasma glucagon by an inhibitory effect against the alpha-cells. It delays gastric emptying by relaxation of the gastric fundus, inhibition of antral contractility, and stimulation of both the tonic and phasic motility of the pyloric sphincter. Enhancement of insulin, suppression of glucagon, and inhibition of gastric emptying are the main determinants controlling glucose homeostasis with GLP-1. Human studies employing the specific GLP-1 receptor antagonist exendin(9-39) show that endogenously released GLP-1 likewise controls fasting plasma glucagon, stimulates insulin, and influences all the motoric mechanisms known to control gastric emptying. Therefore, GLP-1 is discussed as an incretin hormone and as an enterogastrone in man. Synthetic GLP-1 also suppresses gastric acid and pancreatic enzyme secretion. The inhibitory effects on upper gastrointestinal functions are at least partly mediated by vagal-cholinergic inhibition and may involve interactions with vagal afferent pathways and/or circumventricular regions within the CNS. GLP-1 is a candidate humoral mediator of the 'ileal brake' exerting inhibition of upper gastrointestinal function preventing malabsorption and postprandial metabolic disturbances. As human studies indicate a central action of GLP-1 in reduction of food intake, it is uncertain if this is a consequence of induction of satiety or of transduction of visceral aversive stress signals.