Two sets of ((resistant x susceptible) F1----parent) and (parent----F1) chimeric mice were prepared. In the chimeric combinations involving BALB/c and DBA/1 mice, all (F1----F1) chimeras developed arthritis as well as potent anticollagen responses after immunization with collagen, whereas all (F1----BALB/c) and (BALB/c----F1) chimeras induced neither arthritis nor immune responses. This type of F1 T cells could be activated with APC from DBA/1 but not from BALB/c mice. Thus, the failure of the [F1 in equilibrium with BALB/c] chimeras to mount anticollagen responses was due to a defect at the APC level. Another arthritis-resistant strain, C57BL/6, exhibited adequate APC function, but reduced T cell responsiveness, representing an intermediate responder. In the chimeric combinations involving C57BL/6 and DBA/1 mice, (F1----F1) and (C57BL/6----C57BL/6) chimeras developed very high and very low incidence of arthritis, respectively. (C57BL/6----F1) chimeras developed an appreciable incidence of arthritis under conditions in which this group of chimeras generated intermediate levels of anticollagen responses. In contrast, (F1----C57BL/6) chimeras developed low incidence of disease despite induction of strong responses. Moreover, cells from collagen-immunized (F1----C57BL/6) chimeras, when transferred into T cell-depleted B cell mice of F1 or C57BL/6 strain, produced comparable immune responses in both groups but induced much more severe arthritis in F1 than in C57BL/6 recipients. These results indicate that: i) two types of arthritis-resistant strains can be identified, each of which has anticollagen APC defect as a low responder and reduced T cell responsiveness as an intermediate responder and ii) a discrepancy between the degree of anticollagen responses and clinical arthritis is attributed to the differential susceptibility to anticollagen immune responses.