A novel single-shot spectral editing technique for in vivo proton NMR is proposed to recover resonances of low-concentration metabolites obscured by very strong resonances. With this new method, editing is performed by transferring transverse magnetization to J-coupled spins from selected coupling partners using a homonuclear Hartmann-Hahn polarization transfer with adiabatic pulses. The current implementation uses 1D-TOCSY with single-voxel localization based on LASER to recover the H1 proton of beta-glucose at 4.63 ppm from under water and the lactate methyl resonances from beneath a strong lipid signal. The method can be extended to further spin systems where conventional editing methods are difficult to perform.
Copyright 2005 Wiley-Liss, Inc.