Morphological alterations in microvasculature occur as a common finding in the brains of non-demented aged persons and patients with Alzheimer's disease. Quantifying the extent of this vascular pathology, however, has been complicated by systematic error (bias) associated with the applications of assumption- and model-based morphometric techniques to human and animal tissues. The current study used novel assumption- and model-free stereological approaches to quantify capillary parameters in the corpus callosum of a double amyloid precursor protein/presenilin-1 transgenic murine model of Alzheimer's disease. The results revealed significant reductions in the total number of capillary segments in white matter of transgenic mice compared to non-transgenic littermates, with no differences in total capillary length. These findings support the view that the expression of mutant human genes for beta-amyloid peptides alters the normal architecture of cerebral capillary vessels in the white matter of mouse brain, which may model microvasculature changes reported in Alzheimer's disease.