The acute antibody and T-cell immune response to Helicobacter pylori infection in humans has not been studied systematically. Serum from H. pylori-naive volunteers challenged with H. pylori and cured after 4 or 12 weeks was tested by enzyme-linked immunosorbent assays for anti-H. pylori-specific immunoglobulin M (IgM) and IgA established using bacterial lysates from homologous (the infecting strain) and heterologous H. pylori. Proteins recognized by IgM antibody were identified by mass spectrometry of immunoreactive bands separated by two-dimensional gel electrophoresis. Mucosal T-cell subsets (CD4, CD8, CD3, and CD30 cells) were assessed by immunohistochemistry. All 18 infected volunteers developed H. pylori-specific IgM responses to both homologous or heterologous H. pylori antigens. H. pylori antigens reacted with IgM antibody at 4 weeks postinfection. IgM Western blotting showed immunoreactivity of postinfection serum samples to multiple H. pylori proteins with molecular weights ranging between 9,000 (9K) to 150K with homologous strains but only a 70K band using heterologous antigens. Two-dimensional electrophoresis demonstrated that production of H. pylori-specific IgM antibodies was elicited by H. pylori flagellins A and B, urease B, ABC transporter binding protein, heat shock protein 70 (DnaK), and alkyl hydroperoxide reductase. Mucosal CD3, CD4, and CD8 T-cell numbers increased following infection. IgM antibody responses were detected to a range of homologous H. pylori antigens 2 to 4 weeks postchallenge. The majority of H. pylori proteins were those involved in motility and colonization and may represent targets for vaccine development.