Gene-specific repeat instability is responsible for >36 human diseases. Active instability varies in a tissue-, developmental stage- and locus-specific manner and occurs in both proliferative and non-proliferative cells. In proliferative cells, DNA replication can contribute to repeat instability either by switching the direction of replication, which changes the repeat sequence that serves as the lagging-strand template (origin switching), or by shifting the location of the origin of replication without altering the replication direction (origin shifting). We propose that changes in the dynamics of replication-fork progression, or architecture, will alter the location of the repeat within the single-stranded lagging-strand template, thereby influencing instability (fork shifting). The fork-shift model, which does not require origin relocation, is influenced by cis-elements and trans-factors associated with driving and maintaining replication forks. The fork-shift model can explain some of the complex behaviours of repeat instability because it is dynamic and responsive to variations in epigenomic and locus activity.