Serotonin signaling is a very early step in patterning of the left-right axis in chick and frog embryos

Curr Biol. 2005 May 10;15(9):794-803. doi: 10.1016/j.cub.2005.03.044.

Abstract

Background: Consistent left-right (LR) asymmetry is a fascinating problem in developmental and evolutionary biology. Conservation of early LR patterning steps among vertebrates as well as involvement of nonprotein small-molecule messengers are very poorly understood. Serotonin (5-HT) is a key neurotransmitter with crucial roles in physiology and cognition. We tested the hypothesis that LR patterning required prenervous serotonin signaling and characterized the 5-HT pathway in chick and frog embryos.

Results: A pharmacological screen implicated endogenous signaling through receptors R3 and R4 and the activity of monoamine oxidase (MAO) in the establishment of correct sidedness of asymmetric gene expression and of the viscera in Xenopus embryos. HPLC and immunohistochemistry analysis indicates that Xenopus eggs contain a maternal supply of serotonin that is progressively degraded during cleavage stages. Serotonin's dynamic localization in frog embryos requires gap junctional communication and H,K-ATPase function. Microinjection of loss- and gain-of-function constructs into the right ventral blastomere randomizes asymmetry. In chick embryos, R3 and R4 activity is upstream of the asymmetry of Sonic hedgehog expression. MAO is asymmetrically expressed in the node.

Conclusions: Serotonin is present in very early chick and frog embryos. 5-HT pathway function is required for normal asymmetry and is upstream of asymmetric gene expression. The microinjection data reveal asymmetry existing in frog embryos by the 4-cell stage and suggest novel intracellular 5-HT mechanisms. These functional and localization data identify a novel role for the neurotransmitter serotonin and implicate prenervous serotonergic signaling as an obligate aspect of very early left-right patterning conserved to two vertebrate species.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Base Sequence
  • Body Patterning / physiology*
  • Chick Embryo
  • Chromatography, High Pressure Liquid
  • DNA Primers
  • Embryo, Nonmammalian / physiology
  • Embryonic Development / physiology*
  • Gene Expression Regulation, Developmental*
  • Immunohistochemistry
  • In Situ Hybridization
  • Molecular Sequence Data
  • Monoamine Oxidase / genetics
  • Monoamine Oxidase / metabolism
  • Receptors, Serotonin / genetics
  • Reverse Transcriptase Polymerase Chain Reaction
  • Sequence Analysis, DNA
  • Serotonin / metabolism*
  • Signal Transduction / physiology*
  • Xenopus / embryology*

Substances

  • DNA Primers
  • Receptors, Serotonin
  • Serotonin
  • Monoamine Oxidase