Several lines of evidence suggest that the chemokine fractalkine (FKN) and its receptor CX3CR1 contribute to the accumulation of leukocytes in the atherosclerotic plaque. The M280 allele of the CX3CR1T280M polymorphism modulates leukocyte recruitment and is associated with lower prevalence of cardiovascular disease. The influence of V249I, another CX3CR1 polymorphism, is discussed controversially. We investigated the association of the alleles M280 and I249 of CX3CR1 with coronary artery disease (CAD) and with acute coronary syndrome (ACS). Additionally, we assessed their association with the soluble ligand FKN and inflammatory activation measured by high sensitivity C-reactive protein (hsCRP). The genotypes of the V249I and T280M polymorphisms were determined in 1152 patients with suspected CAD.720 (62.5%) individuals showed significant CAD with an ACS prevalence of 59.3%. Using multivariate regression, we found a harmful influence of I249 (adjusted OR=1.8, P<0.03) and a protective effect of M280 (adjusted OR=0.6, P<0.04) on the occurrence of ACS in patients with CAD. Correspondingly, patients with I249 but without M280 (17%) were at elevated risk of ACS (OR=1.6, P<0.04). During ACS these patients (carrying only I249) had significantly higher circulating concentrations of FKN and high sensitivity C-reactive protein (1.9- and 1.6-fold). We found no association of the I249 or the M280 allele with the occurrence of CAD. In conclusion, I249 and M280 have opposite effects on the occurrence of ACS. The presence of I249 not "balanced" by M280 confers an elevated risk of ACS. A FKN-mediated enhanced inflammatory activation might explain this increased risk.