There is growing evidence that Rho-kinases (ROCKs), the immediate downstream targets of the small guanosine triphosphate-binding protein Rho, may contribute to cardiovascular disease. ROCKs play a central role in diverse cellular functions such as smooth muscle contraction, stress fiber formation and cell migration and proliferation. Overactivity of ROCKs is observed in cerebral ischemia, coronary vasospasm, hypertension, vascular inflammation, arteriosclerosis and atherosclerosis. ROCKs, therefore, may be an important and still relatively unexplored therapeutic target in cardiovascular disease. Recent experimental and clinical studies using ROCK inhibitors such as Y-27632 and fasudil have revealed a critical role of ROCKs in embryonic development, inflammation and oncogenesis. This review will focus on the potential role of ROCKs in cellular functions and discuss the prospects of ROCK inhibitors as emerging therapy for cardiovascular diseases.