Classical immunization protocols have produced an antibody-based humoral response that is very effective against susceptible infectious diseases. Immunization introduces an external substance to induce the host immune system to respond specifically. Typically an antigen is used, but DNA, or a primed, pre-existing leukocyte or antigen-presenting cell, can also be used. Immunization is currently being used or investigated for the prevention and treatment of infectious diseases, cancer, addictions, allergies, pregnancy, and autoimmune diseases. It is also being used to produce biologically active materials such as polyclonal and monoclonal antibodies, antivenins, and anti-toxins for treating a wide range of conditions. Animals have been integral to the development of immunization techniques, as producers of toxoids and antitoxins, as models (e.g., to validate materials and protocols used for immunization, to understand the impact of immunization itself on the immune system, and to help investigators devise methods for determining the efficacy of vaccines) and as beneficiaries themselves of vaccines and antitoxins. The choice of immunization protocols is complex, and results may be affected by many factors such as dose and concentration of antigen, choice of adjuvants, time between inoculation and response measurement, and method of detection. The immune system responses to an antigen are also complex and continue to develop with advancing age. Anatomical, physiological, and immune system differences between species influence responses to immunization, as do the purity and presentation of the antigens and adjuvants. When directly comparing results, animals should be sourced from the same supplier. This review highlights the many uses of immunization techniques and introduces important considerations for the choice of protocols and animal models.