Gene profiling in atherosclerosis reveals a key role for small inducible cytokines: validation using a novel monocyte chemoattractant protein monoclonal antibody

Circulation. 2005 Jun 28;111(25):3443-52. doi: 10.1161/CIRCULATIONAHA.104.510073. Epub 2005 Jun 20.

Abstract

Background: Pathological aspects of atherosclerosis are well described, but gene profiles during atherosclerotic plaque progression are largely unidentified.

Methods and results: Microarray analysis was performed on mRNA of aortic arches of ApoE-/- mice fed normal chow (NC group) or Western-type diet (WD group) for 3, 4.5, and 6 months. Of 10 176 reporters, 387 were differentially (>2x) expressed in at least 1 group compared with a common reference (ApoE-/-, 3- month NC group). The number of differentially expressed genes increased during plaque progression. Time-related expression clustering and functional grouping of differentially expressed genes suggested important functions for genes involved in inflammation (especially the small inducible cytokines monocyte chemoattractant protein [MCP]-1, MCP-5, macrophage inflammatory protein [MIP]-1alpha, MIP-1beta, MIP-2, and fractalkine) and matrix degradation (cathepsin-S, matrix metalloproteinase-2/12). Validation experiments focused on the gene cluster of small inducible cytokines. Real-time polymerase chain reaction revealed a plaque progression-dependent increase in mRNA levels of MCP-1, MCP-5, MIP-1alpha, and MIP-1beta. ELISA for MCP-1 and MCP-5 showed similar results. Immunohistochemistry for MCP-1, MCP-5, and MIP-1alpha located their expression to plaque macrophages. An inhibiting antibody for MCP-1 and MCP-5 (11K2) was designed and administered to ApoE-/- mice for 12 weeks starting at the age of 5 or 17 weeks. 11K2 treatment reduced plaque area and macrophage and CD45+ cell content and increased collagen content, thereby inducing a stable plaque phenotype.

Conclusions: Gene profiling of atherosclerotic plaque progression in ApoE-/- mice revealed upregulation of the gene cluster of small inducible cytokines. Further expression and in vivo validation studies showed that this gene cluster mediates plaque progression and stability.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Monoclonal / administration & dosage
  • Antibodies, Monoclonal / pharmacology
  • Aorta, Thoracic
  • Apolipoproteins E / deficiency
  • Atherosclerosis / drug therapy
  • Atherosclerosis / genetics*
  • Atherosclerosis / pathology
  • Chemokine CCL2 / immunology
  • Chemokine CCL8
  • Chemokines / genetics
  • Chemokines / physiology*
  • Cluster Analysis
  • Disease Progression
  • Extracellular Matrix / metabolism
  • Gene Expression Profiling*
  • Inflammation / genetics
  • Male
  • Mice
  • Mice, Knockout
  • Monocyte Chemoattractant Proteins / immunology
  • Monocyte Chemoattractant Proteins / physiology
  • Peptide Hydrolases / genetics
  • RNA, Messenger / analysis
  • Time Factors

Substances

  • Antibodies, Monoclonal
  • Apolipoproteins E
  • Ccl2 protein, mouse
  • Ccl8 protein, mouse
  • Chemokine CCL2
  • Chemokine CCL8
  • Chemokines
  • Monocyte Chemoattractant Proteins
  • RNA, Messenger
  • Peptide Hydrolases