The use of softer-energy X-rays produced by synchrotron radiation for diffraction is an area of current interest. In this paper, experiments exploiting resonant scattering at the L absorption edges of 3d transition metal elements are reported. Such energies, typically 500-1000 eV, are at the extreme limit of soft X-ray diffraction where absorption effects are so severe that the sample and diffractometer must be placed in a windowless high-vacuum vessel. In addition, the Ewald sphere is so small as to likely contain, at most, only a single Bragg reflection. Advantages of using such radiation for the study of weak diffraction effects such as anomalous scattering, charge ordering, magnetic diffraction and orbital ordering are reported.