Laminin-5-rich extracellular matrix derived from 804G cells (804G-ECM) engages beta1 integrins to induce spreading, improve glucose-stimulated insulin secretion (GSIS), and increase survival of pancreatic beta cells. The present study examines whether 804G-ECM activates the transcriptional activity of NF-kappaB and the involvement of NF-kappaB in those effects of 804G-ECM on pancreatic beta cells. 804G-ECM induces nuclear translocation and the DNA binding activity of the p65 subunit of NF-kappaB. 804G-ECM-induced nuclear translocation of NF-kappaB was weak as compared with that induced by interleukin-1beta. Transient 804G-ECM-induced DNA binding activity of NF-kappaB (peak at 2 h) and overexpression of NF-kappaB target genes IkappaB alpha and NF-kappaB1(p105) (peak at 4 h) were observed. When NF-kappaB was inhibited by an inhibitor of IkappaB alpha phosphorylation (Bay 11-7082) or by a recombinant adenovirus expressing the nonphosphorylatable form of IkappaB alpha, 804G-ECM-induced cell spreading and actin cytoskeleton organization were reduced. GSIS from cells on 804G-ECM was inhibited 5-fold, whereas cell survival was not affected. In summary, the results indicate that 804G-ECM induces a transient and moderate NF-kappaB activity. This study shows for the first time that ECM-induced NF-kappaB activity is necessary in maintaining GSIS, although it does not affect survival of pancreatic beta cells. The effects of ECM-induced NF-kappaB activity contrast with the deleterious effects of cytokine-induced NF-kappaB activity. It is proposed that transient and moderate NF-kappaB activity is essential for proper function of the pancreatic beta cell.