Purpose: We implemented a fast gradient echo (GRE) sequence with an echo-planar imaging (EPI) read-out (FGRE-ET) to conduct myocardial perfusion studies on a conventional scanner. The accuracy of combined perfusion and viability studies is evaluated in comparison with coronary angiography (CAG).
Materials and methods: We enrolled 33 patients suspected of having coronary artery disease in this study. Short-axis perfusion images of the left ventricles were acquired following intravenous bolus injection of gadolinium-DTPA (0.05 mml/kg), both after myocardial loading by dipyridamole (0.56 mg/kg) and at rest. Viability studies were obtained using an inversion-recovery FGRE sequence. Radiologists performed blinded film readings. The findings with perfusion and the viability studies were compared with CAG on a segment-to-segment basis corresponding to the coronary arteries' territories. Stenosis equal to or greater than 75% in diameter was considered significant on CAG. The results were also compared with single photon emission computed tomography (SPECT) in 23 patients.
Results: The combination of perfusion and viability studies showed 85.7% sensitivity, 88.9% specificity, and 87.2% accuracy in comparison with CAG. SPECT revealed respective rates of 71.7%, 78.3%, and 73.9% in 23 patients of this group.
Conclusion: Myocardial perfusion studies using FGRE-ET were feasible and accurate, even on a conventional scanner.