The olfactory bulb is the target of neural progenitor cells that are generated in the subventricular zone of the lateral ventricle in the adult brain. This permanent neurogenesis is likely influenced by olfactory input to the bulb since previous studies have shown that cell proliferation and/or apoptotic death are stimulated by naris closure or surgical transection of the olfactory nerve. Since the olfactory bulb is densely innervated by noradrenergic afferents originating in the locus coeruleus, we have studied the impact of pharmacologically activating this noradrenergic system on cell death and proliferation following unilateral olfactory axotomy in the adult mouse olfactory bulb. We found that noradrenaline release in the olfactory bulb was significantly increased by intraperitoneal injections of the selective alpha(2)-adrenoceptor antagonists, dexefaroxan (0.63 mg/kg) and 5-fluoro-methoxyidazoxan (F 14413; 0.16 mg/kg). A chronic treatment with either compound for 7 days following olfactory axotomy significantly reduced neuronal death, glial activation and cell proliferation in the deafferented olfactory bulb. These data (1) confirm that alpha(2)-adrenoceptor antagonists, presumably by facilitating central noradrenergic transmission, afford neuroprotection in vivo, as previously shown in models of cerebral ischemia, excitotoxicity and devascularization-induced neurodegeneration, and (2) support a role of the locus coeruleus noradrenergic system in promoting survival of neurons in areas of the brain where neurogenesis persists in the adult.