Autoradiographic mapping of dopamine-D2/D3 receptor stimulated [35S]GTPgammaS binding in the human brain

Eur J Neurosci. 2005 Jul;22(1):65-71. doi: 10.1111/j.1460-9568.2005.04192.x.

Abstract

Agonist stimulated [35S]guanosine 5'-gamma-thiotriphosphate ([35S]GTPgammaS) binding autoradiography was established for the examination of dopamine-D2/D2 receptors in human brain sections. The distribution of G proteins activated by dopamine-D2/D3 receptors was studied in whole hemisphere cryosections. Dopamine stimulated [35S]GTPgammaS binding in brain regions with high densities of dopamine D2-like receptors, i.e. putamen (23 +/- 2%, mean +/- SEM,% stimulation over basal binding), caudate (20 +/- 0%) and substantia nigra (22 +/- 2%), but also in regions with lower receptor densities such as amygdala (17 +/- 8%), hippocampus (16 +/- 6%), anterior cingulate (13 +/- 3%), and thalamus (12 +/- 2%). Dopamine stimulated [35S]GTPgammaS binding to significantly higher levels in the dorsal than in the ventral part of the striatum. Dopamine caused low or very low stimulation in all cortical areas. Raclopride, a selective D2/D3 receptor antagonist, potently inhibited dopamine stimulated [35S]GTPgammaS binding, whereas R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390), a selective D1 antagonist, did not block the [35S]GTPgammaS binding response stimulated by dopamine. Hence, the stimulatory effect of dopamine was primarily mediated by D2/D3 receptors. Quinpirole stimulated [35S]GTPgammaS binding in the same regions as dopamine. The maximal level of stimulation induced by dopamine and quinpirole was not significantly different. The present study demonstrates that agonist stimulated [35S]GTPgammaS binding autoradiography could be a suitable technique for the examination of dopamine-D2/D3 receptors in the human brain. This functional assay could provide useful new information about dopamine receptor/G protein coupling in the postmortem human brain, and reveal possible disease related alterations of the interaction between D2/D3 receptors and G proteins.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Autoradiography / methods
  • Binding, Competitive / drug effects
  • Binding, Competitive / physiology*
  • Brain / drug effects
  • Brain / metabolism*
  • Brain Mapping / methods
  • Dopamine / metabolism*
  • Dopamine / pharmacology
  • Dopamine Agonists / pharmacology
  • Dopamine Antagonists / pharmacology
  • GTP-Binding Proteins / drug effects
  • GTP-Binding Proteins / metabolism*
  • Guanosine 5'-O-(3-Thiotriphosphate) / metabolism
  • Guanosine 5'-O-(3-Thiotriphosphate) / pharmacokinetics
  • Humans
  • Male
  • Middle Aged
  • Neurons / drug effects
  • Neurons / metabolism
  • Radioligand Assay / methods
  • Receptors, Dopamine D2 / drug effects
  • Receptors, Dopamine D2 / metabolism*
  • Receptors, Dopamine D3
  • Sulfur Radioisotopes
  • Synaptic Transmission / drug effects
  • Synaptic Transmission / physiology

Substances

  • DRD3 protein, human
  • Dopamine Agonists
  • Dopamine Antagonists
  • Receptors, Dopamine D2
  • Receptors, Dopamine D3
  • Sulfur Radioisotopes
  • Guanosine 5'-O-(3-Thiotriphosphate)
  • GTP-Binding Proteins
  • Dopamine