Objective: To evaluate high field magnetic resonance (MR) imaging for imaging of osteochondral defects.
Materials and methods: Nine osteochondral defects were simulated in three cadaveric talus specimens using a diamond drill. All specimens were examined on a 1.0 T MR unit and a 3.0 T MR unit. A T2-weighted turbo spin-echo (TSE) sequence with a 2 mm slice thickness and a 256 x 256 matrix size was used on both scanners. The visibility of the osteochondral separation and the presence of susceptibility artifacts at the drilling bores were scored on all images.
Results: Compared to the 1.0 T MR unit, the protocol on the 3.0 T MR unit allowed a better delineation of the disruption of the articular cartilage and a better demarcation of the subchondral defect. Differences regarding the visualization of the subchondral defect were found to be statistically significant (P<0.05). Differences with regard to susceptibility artifacts at the drilling bores were not statistically significant (P>0.05). The average SNR was higher using 3.0 T MRI (SNR=12), compared to 1.0 T MRI (SNR=7).
Conclusion: High field MRI enables the acquisition of images with sufficient resolution and higher SNR and has therefore the potential to improve the staging of osteochondral defects.