The best characterized effect of glucose-dependent insulinotropic polypeptide (GIP) is its stimulatory effect on insulin secretion by pancreatic beta-cells. Recently, it was demonstrated that some cases of primary adrenal Cushing's syndrome were secondary to the ectopic expression of non-mutated GIP receptor (GIP-R) in bilateral adrenal hyperplasias or unilateral adrenal adenomas, resulting in food-dependent steroidogenesis. Using a human multiple-expression tissue array, GIP-R was found to be expressed in a large number of human adult and fetal tissues, but not in the adrenal gland. The analysis of the promoter region of human (h) GIP-R gene revealed six consensus sequences important in regulating the reporter gene activity and capable of binding to Sp1 and Sp3 transcription factors. Data obtained by gene array and semi-quantitative RT-PCR showed an increase in the expression of Sp3 and CRSP9 (co-regulator of Sp1 transcription factor, subunit 9) in the adrenal adenomas or bilateral macronodular hyperplasias of patients with GIP-dependent Cushing's syndrome; they were, however, also increased in some patients with non-GIP-dependent cortisol-secreting adenomas or with ACTH-dependent Cushing's disease. This study represents the first step in our understanding of the mechanisms involved in the regulation of the expression of the hGIP-R gene.