Human episodic memory refers to the recollection of an unique past experience in terms of what happened, and where and when it happened. Factoring out the issue of conscious recollection, episodic memory, even at the behavioral level, has been difficult to demonstrate in non-human mammals. Although, it was previously shown that rodents can associate what and when or what and where information given on unique trials, it proved to be difficult to demonstrate memory for what, where, and when simultaneously in mammals, without using extensive training procedures, which might induce semantic rather than episodic memory recall. Towards the goal of an animal model of human episodic memory we designed an three-trial object exploration task in which different versions of the novelty-preference paradigm were combined to subsume (a) object recognition memory, (b) the memory for locations in which objects were explored, and (c) the temporal order memory for object presented at distinct time points. We found that mice spent more time exploring two "old familiar" objects relative to two "recent familiar" objects, reflecting memory for what and when and concomitantly directed more exploration at a spatially displaced "old familiar" object relative to a stationary "old familiar" object, reflecting memory for what and where. These results suggest that during a single test trial the mice were able to (a) recognize previously explored objects, (b) remember the location in which particular objects were previously encountered, and (c) to discriminate the relative recency in which different objects were presented. According to the currently discussed behavioral criteria for episodic-like memory in animals, our results suggest that mice are capable to form such higher order memories.