The role of collagens and collagen receptors was investigated in stimulating platelet-dependent thrombin generation. Fibrillar type-I collagens, including collagen from human heart, were most potent in enhancing thrombin generation, in a way dependent on exposure of phosphatidylserine (PS) at the platelet surface. Soluble, non-fibrillar type-I collagen required pre-activation of integrin alpha2beta1 with Mn2+ for enhancement of thrombin generation. With all preparations, blocking of glycoprotein VI (GPVI) with 9O12 antibody abrogated the collagen-enhanced thrombin generation, regardless of the alpha2beta 1 activation state. Blockade of alpha2beta1 alone or antagonism of autocrine thromboxane A2 and ADP were less effective. Blockade of alphaIIbbeta3 with abciximab suppressed thrombin generation in platelet-rich plasma, but this did not abolish the enhancing effect of collagens. The high activity of type-I fibrillar collagens in stimulating GPVI-dependent procoagulant activity was confirmed in whole-blood flow studies, showing that these collagens induced relatively high expression of PS. Together, these results indicate that: i) fibrillar type-I collagen greatly enhances thrombin generation, ii) GPVI-induced platelet activation is principally responsible for the procoagulant activity of fibrillar and non-fibrillar collagens, iii) alpha2beta1 and signaling via autocrine mediators facilitate and amplify this GPVI activity, and iv) alphaIIbbeta3 is not directly involved in the collagen effect.