Single-crystal synchrotron X-ray diffraction study of wüstite and magnesiowüstite at lower-mantle pressures

J Synchrotron Radiat. 2005 Sep;12(Pt 5):577-83. doi: 10.1107/S0909049505022326. Epub 2005 Aug 16.

Abstract

This study demonstrates the use of monochromatic synchrotron X-ray radiation of 40 keV for high-precision equation-of-state studies on sets of single crystals analysed individually in the same diamond-anvil pressure cell. Angle-dispersive zone-axis diffraction patterns were obtained from crystals of wustite-Fe0.93O and magnesiowüstite-(Mg0.73Fe0.27)O to 51 GPa in a hydrostatic helium pressure medium. The rhombohedral phase of Fe0.93O was observed above 23 GPa, and its isothermal bulk modulus (K0) was determined to be 134 (+/-4) GPa, assuming K'=4. The rhombohedral phase of Fe(0.93)O is more compressible than B1-structured Fe0.93O, with K0=146 (+/-2) GPa. Magnesiowüstite-(Mg0.73Fe0.27)O remains cubic over the experimental pressure range, and has a bulk modulus of 154 (+/-3) GPa with K'=4.0 (+/-0.1).