We performed differential gene expression profiling in the peripheral nervous system by comparing the transcriptome of sensory neurons with the transcriptome of lower motor neurons. Using suppression subtractive cDNA hybridization, we identified 5 anonymous transcripts with a predominant expression in sensory neurons. We determined the gene structures and predicted the functional protein domains. The 4930579P15Rik gene encodes for a novel inhibitor of protein phosphatase-1 and 9030217H17Rik was found to be the mouse gene synaptopodin. We performed in situ hybridization for all genes in mouse embryos, and found expression predominantly in the primary class of sensory neurons. Expression of 4930579P15Rik and synaptopodin was restricted to craniospinal sensory ganglia. Neither synaptopodin, nor any known family member of 4930579P15Rik, has ever been described in sensory neurons. The identification of protein domains and expression patterns allows further functional analysis of these novel genes in relation to the development and biology of sensory neurons.