Natural variation in Vif: differential impact on APOBEC3G/3F and a potential role in HIV-1 diversification

PLoS Pathog. 2005 Sep;1(1):e6. doi: 10.1371/journal.ppat.0010006. Epub 2005 Jul 22.

Abstract

The HIV-1 Vif protein counteracts the antiviral activity exhibited by the host cytidine deaminases APOBEC3G and APOBEC3F. Here, we show that defective vif alleles can readily be found in HIV-1 isolates and infected patients. Single residue changes in the Vif protein sequence are sufficient to cause the loss of Vif-induced APOBEC3 neutralization. Interestingly, not all the detected defects lead to a complete inactivation of Vif function since some mutants retained selective neutralizing activity against APOBEC3F but not APOBEC3G or vice versa. Concordantly, independently hypermutated proviruses with distinguishable patterns of G-to-A substitution attributable to cytidine deamination induced by APOBEC3G, APOBEC3F, or both enzymes were present in individuals carrying proviruses with completely or partly defective Vif variants. Natural variation in Vif function may result in selective and partial neutralization of cytidine deaminases and thereby promote viral sequence diversification within HIV-1 infected individuals.