In vivo genetic selection of renal proximal tubules

Mol Ther. 2006 Jan;13(1):49-58. doi: 10.1016/j.ymthe.2005.09.004. Epub 2005 Oct 10.

Abstract

Repopulation by transplanted cells can result in effective therapy for several regenerative organs including blood, liver, and skin. In contrast, cell therapies for renal diseases are not currently available. Here we developed an animal model in which cells genetically resistant to a toxic intermediate of tyrosine metabolism, homogentisic acid (HGA), were able to repopulate the damaged proximal tubule epithelium of mice with fumarylacetoacetate hydrolase (Fah) deficiency. HGA resistance was achieved by two independent mechanisms. First, Fah+ transplanted bone marrow cells produced significant replacement of damaged proximal tubular epithelium (up to 50%). The majority of bone marrow-derived epithelial cells were generated by cell fusion, not transdifferentiation. In addition to regeneration by fusion-derived epithelial cells, proximal tubular repopulation was also observed by host epithelial cells, which had lost the homogentisic acid dioxygenase gene. These data demonstrate that extensive regeneration of the renal proximal tubule compartment can be achieved through genetic selection of functional cells.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Acute Disease
  • Animals
  • Bone Marrow Transplantation*
  • Cell Differentiation
  • Cell Fusion
  • Chronic Disease
  • Disease Models, Animal*
  • Homogentisate 1,2-Dioxygenase / genetics
  • Homogentisic Acid / metabolism*
  • Hydrolases / genetics
  • Hydrolases / metabolism*
  • Kidney Diseases / enzymology
  • Kidney Diseases / pathology*
  • Kidney Diseases / physiopathology
  • Kidney Tubules, Proximal / enzymology
  • Kidney Tubules, Proximal / pathology*
  • Kidney Tubules, Proximal / physiopathology
  • Male
  • Mice
  • Mice, Knockout
  • Necrosis
  • Regeneration
  • Tyrosine / metabolism
  • Urothelium / enzymology
  • Urothelium / pathology

Substances

  • Tyrosine
  • Homogentisate 1,2-Dioxygenase
  • Hydrolases
  • fumarylacetoacetase
  • Homogentisic Acid