Hepatitis C virus (HCV) is the major pathogen of chronic hepatitis and liver disease, but currently there are no prophylactic HCV vaccines available. The HCV core protein-encoding sequence is among the most conserved genes in the HCV genome, making it a prime candidate for a component of a vaccine. The core protein localizes to the endoplasmic reticulum (ER) through a C-terminal hydrophobic region that is cotranslationally inserted into the ER membrane. Here we show that removal of the C-terminal hydrophobic region confers nuclear localization and enhances proteasomal degradation of the core protein in mammalian cells. This efficient protein proteolysis induces enhanced core-specific CD8(+) T cell responses in BALB/c mice immunized with plasmids expressing C-terminal deletions of the HCV core protein. These results suggest that more potent HCV vaccines can be achieved by targeting the core protein for proteasomal degradation by deletion of its C-terminal hydrophobic domain.