Purpose: CaBP4, a photoreceptor-specific protein of the rods and cones, is essential for the development and maintenance of the mouse photoreceptor synapse. In this study, double CaBP4/rod alpha-transducin knockout (Cabp4(-/-)Gnat1(-/-)) mice lacking the rod-mediated component of electrophysiologic responses were generated and analyzed to investigate the role of CaBP4 in cones.
Methods: The retinal morphology and physiologic function of 2-month-old Cabp4(-/-)Gnat1(-/-) mice were analyzed using immunocytochemistry, electron microscopy, and single-flash and flicker electroretinography (ERG).
Results: The thickness of the outer plexiform layer and the number of photoreceptor terminals in Cabp4(-/-)Gnat1(-/-) mice were reduced to levels similar to those of Cabp4(-/-) mice. Single-flash and flicker ERG showed that the amplitude and sensitivity of the b-wave in the Cabp4(-/-)Gnat1(-/-) mice were severely attenuated compared with those in wild-type and Gnat1(-/-) mice.
Conclusions: Results indicate that the cone synaptic function in Cabp4(-/-)Gnat1(-/-) mice was severely disrupted, whereas the morphologic defects observed in Cabp4(-/-)Gnat1(-/-) mice were similar to those of single Cabp4(-/-) knockout mice. This and a previous study reveal that CaBP4 is critical for signal transmission from rods and cones to second-order neurons.