The HIN-1 gene encoding a small, secreted protein is silenced due to methylation in a substantial fraction of breast, prostate, lung, and pancreatic carcinomas, suggesting a potential tumor suppressor function. The receptor of HIN-1 is unknown, but ligand-binding studies indicate the presence of high-affinity cell surface HIN-1 binding on epithelial cells. Here, we report that HIN-1 is a potent inhibitor of anchorage-dependent and anchorage-independent cell growth, cell migration, and invasion. Expression of HIN-1 in synchronized cells inhibits cell cycle reentry and the phosphorylation of the retinoblastoma protein (Rb), whereas in exponentially growing cells, HIN-1 induces apoptosis without apparent cell cycle arrest and effect on Rb phosphorylation. Investigation of multiple signaling pathways revealed that mitogen-induced phosphorylation and activation of AKT are inhibited in HIN-1-expressing cells. In addition, expression of constitutively activate AKT abrogates HIN-1-mediated growth arrest. Taken together, these studies provide further evidence that HIN-1 possesses tumor suppressor functions, and that these activities may be mediated through the AKT signaling pathway.