Myasthenia gravis (MG) is an autoimmune disease of neuromuscular junctions where thymus plays a pathogenetic role. Thymectomy benefits patients, and thymic hyperplasia, a lymphoid infiltration of perivascular spaces becoming site of autoantibody production, is recurrently observed. Cytokines and chemokines, produced by thymic epithelium and supporting survival and migration of T and B cells, are likely to be of great relevance in pathogenesis of thymic hyperplasia. In thymic epithelial cell (TEC) cultures derived "in vitro" from normal or hyperplastic age-matched MG thymuses, we demonstrate by gene profiling analysis that MG-TEC basally overexpress genes coding for p38 and ERK1/2 MAPKs and for components of their signaling pathways. Immunoblotting experiments confirmed that p38 and ERK1/2 proteins were overexpressed in MG-TEC and, in addition, constitutively activated. Pharmacological blockage with specific inhibitors confirmed their role in the control of IL-6 and RANTES gene expression. According to our results, IL-6 and RANTES levels were abnormally augmented in MG-TEC, either basally or upon induction by adhesion-related stimuli. The finding that IL-6 and RANTES modulate, respectively, survival and migration of peripheral lymphocytes of myasthenic patients point to MAPK transcriptional and posttranscriptional abnormalities of MG-TEC as a key step in the pathological remodelling of myasthenic thymus.