The neurofibromatosis type 1 (NF1) gene product, neurofibromin, is known to interact with Ras, thereby negatively regulating its growth-promoting function. Although this is a well-established interaction, the discovery of other neurofibromin interacting partners could reveal new functional properties of this large protein. Using yeast two-hybrid analysis against a brain cDNA library, we identified a novel interaction between the amyloid precursor protein and the GTPase activating protein-related domain of neurofibromin. This interaction was further analyzed in human melanocytes and confirmed by immunoprecipitation and colocalization studies. In addition, we observed a colocalization of amyloid precursor protein and neurofibromin with melanosomes. Amyloid precursor protein has been proposed to function as a vesicle cargo receptor for the motor protein kinesin-1 in neurons. This colocalization of amyloid precursor protein and neurofibromin with melanosomes was lost in melanocytes obtained from normal skin of a NF1 patient. We suggest that a complex between amyloid precursor protein, neurofibromin, and melanosomes might be important in melanosome transport, which could shed a new light on the etiopathogenesis of pigment-cell-related manifestations in NF1.