The formation of new blood vessels plays an important role in human disease development and progression. For instance, it is well established that the growth of most cancers critically depends on the supply of nutrition and oxygen by newly recruited blood vessels. Similarly, malignant gliomas, the most common primary brain tumors occurring in humans are highly dependent on angiogenesis. In recent years, there has been tremendous effort to uncover the molecular mechanisms that drive blood vessel growth in adult tissues, especially during cancer progression. Vascular endothelial growth factor (VEGF) and other morphogens, such as angiopoietins and ephrins have been shown to be critically involved in the formation of new blood vessels during both developmental and pathological angiogenesis as evidenced by genetic studies in mice. In this review, we focus on angiopoietins, a family of growth factor ligands binding to Tie tyrosine kinase receptors with emphasis on their functional consequences during the growth and progression of experimental tumors and malignant human gliomas.