Background: Animal-derived, protein-containing surfactants seem to be superior to protein-free surfactants. Lucinactant, a synthetic surfactant containing a surfactant protein-B peptide analog, has been shown to be effective in animal models and phase II clinical trials. To date, lucinactant has not been compared with an animal-derived surfactant in a premature animal model.
Objective: The objective was to compare the acute and sustained effects of lucinactant among premature lambs with respiratory distress syndrome (RDS) with the effects of a natural porcine surfactant (poractant-alpha).
Methods: After 5 minutes of mechanical ventilation twin premature lambs were assigned randomly to the lucinactant group (30 mg/mL, 5.8 mL/kg) or the poractant-alpha group (80 mg/mL, 2.2 mL/kg). Heart rate, systemic arterial pressure, arterial pH, blood gas values, and lung mechanics were recorded for 12 hours.
Results: Baseline fetal pH values were similar for the 2 groups (pH 7.27). After 5 minutes of mechanical ventilation, severe RDS developed (pH: <7.08; Paco2: >80 mm Hg; Pao2: <40 mm Hg; dynamic compliance: <0.08 mL/cm H2O per kg). After surfactant instillation, similar improvements in gas exchange and lung mechanics were observed for the lucinactant and poractant-alpha groups at 1 hour (pH: 7.3 +/- 0.1 vs 7.4 +/- 0.1; Paco2: 8 +/- 18 mm Hg vs 40 +/- 8 mm Hg; Pao2: 167 +/- 52 mm Hg vs 259 +/- 51 mm Hg; dynamic compliance: 0.3 +/- 0.1 mL/cm H2O per kg vs 0.3 +/- 0.1 mL/cm H2O per kg). The improvements in lung function were sustained, with no differences between groups. Cardiovascular profiles remained stable in both groups.
Conclusions: Among preterm lambs with severe RDS, lucinactant produced improvements in gas exchange and lung mechanics similar to those observed with a porcine-derived surfactant.