Spatially resolved dynamic eigenmode spectrum of Co rings

Phys Rev Lett. 2006 Feb 10;96(5):057207. doi: 10.1103/PhysRevLett.96.057207. Epub 2006 Feb 7.

Abstract

The spatially resolved eigenmode spectrum of micrometer-sized Co ring elements has been determined by means of combined vector network analyzer ferromagnetic resonance and time resolved magneto-optic Kerr effect measurements. Up to 5 resonant eigenmodes were observed in the frequency range from 45 MHz to 20 GHz as a function of an external magnetic bias field. A well-defined mode structure was found for the two equilibrium states (vortex and onion) which correspond to distinctive spatial modes. The effect of dynamic inter-ring coupling on the modes in the remanent states was evinced. The experimental results are found to be in good agreement with those of micromagnetic simulations. Our results demonstrate that, in analogy to the well-defined static equilibrium magnetic states of ring elements, the eigenmode spectra of this high symmetry geometry consist of a well-defined and simple mode structure.